Automatic three-dimensional multimodality registration using radionuclide transmission CT attenuation maps: a phantom study.
نویسندگان
چکیده
UNLABELLED Coregistration of images from a single subject, acquired by different modalities, is important in clinical diagnosis, surgery and therapy planning. The purpose of this study was to evaluate, using a physical torso phantom, a novel, fully automated method for three-dimensional image registration of CT and SPECT, using radionuclide transmission (RNT) attenuation maps. METHODS We obtained CT scans and SPECT scans paired with RNT maps of an anthropomorphic cardiac phantom. RNT attenuation maps were acquired using an uncollimated 99mTc-filled flood source. RNT and SPECT scans were acquired in the same spatial orientation (usual clinical practice in nonuniform attenuation correction). In addition, CT attenuation maps (CTMAPs) for 99mTc SPECT were generated from CT by linear energy scaling. RNT maps were registered to CT and CTMAPs by iterative simplex minimization of count difference and uniformity index (sum of RNT map intensity variances corresponding to each intensity level in the CT volume). In each iteration, three shifts and three angles were adjusted. To register SPECT to CT, we applied the RNT transformation parameters to SPECT. RESULTS RNT maps could be registered to CT and CTMAP images using both criteria. The average three-dimensional distance between landmark and automated registration was 2.5 +/- 1.2 mm for count difference and 3.3 +/- 1.3 mm for uniformity index. The three-dimensional reproducibility errors were 1.2 +/- 0.7 mm for count difference, 2.1 +/- 0.5 mm for uniformity index and 2.3 +/- 1.0 mm for manual marker registration. The minimization of uniformity index was robust when up to 50% CT or RNT slices were missing and was not affected significantly (<2 mm) by realistic variation in CT values (+/- 12 Hounsfield units). CONCLUSION In addition to typical use in nonuniform attenuation correction, RNT maps can be used for fully automated three-dimensional registration of SPECT to CT. Such registration is not affected by features and quality of SPECT images and avoids difficulties associated with fiducial markers. Our method can be applied to SPECT-CT registration of various organs, such as brain, heart, lungs, breasts and abdomen, including oncological scans.
منابع مشابه
Comparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data
Introduction: The advent of dual-modality PET/CT scanners has revolutionized clinical oncology by improving lesion localization and facilitating treatment planning for radiotherapy. In addition, the use of CT images for CT-based attenuation correction (CTAC) decreases the overall scanning time and creates a noise-free attenuation map (6map). CTAC methods include scaling, s...
متن کاملAttenuation correction of myocardial SPECT images with X-ray CT: effects of registration errors between X-ray CT and SPECT.
PURPOSE Attenuation correction with an X-ray CT image is a new method to correct attenuation on SPECT imaging, but the effect of the registration errors between CT and SPECT images is unclear. In this study, we investigated the effects of the registration errors on myocardial SPECT, analyzing data from a phantom and a human volunteer. METHODS Registerion (fusion) of the X-ray CT and SPECT ima...
متن کاملQuantitative SPECT and planar 32P bremsstrahlung imaging for dosimetry purpose –An experimental phantom study
Background: In this study, Quantitative 32P bremsstrahlung planar and SPECT imaging and consequent dose assessment were carried out as a comprehensive phantom study to define an appropriate method for accurate Dosimetry in clinical practice. Materials and Methods: CT, planar and SPECT bremsstrahlung images of Jaszczak phantom containing a known activity of 32P were acquired. In addition, Phanto...
متن کاملEvaluation of attenuation correction process in cardiac SPECT images
Introduction: Attenuation correction is a useful process for improving myocardial perfusion SPECT and is dependent on activity and distribution of attenuation coefficients in the body (attenuation map). Attenuation artifacts are a common problem in myocardial perfusion SPECT. The aim of this study was to compare the effect of attenuation correction using different a...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 40 3 شماره
صفحات -
تاریخ انتشار 1999